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Abstract—This article deals with two major challenges in
population-based structural health monitoring (PBSHM) for
critical infrastructures, with focus on bridges. The first chal-
lenge is related to training a collaborative model based on
local datasets from different bridges under privacy-preserving
constraints. The second challenge is related to the (potential)
limited amount of data and/or resources available locally at
some bridges. To address these issues, we propose a framework
based on clustered federated learning (CFL) for efficient and
collaborative training of monitoring models while preserving
data privacy. The approach leverages the concept of principal
angles (PAs) to cluster the bridges according to their data
distributions without domain-based prior information. Cluster-
specific models are then trained efficiently according to the
available local resources. Moreover, the proposed framework
allows the integration of new bridges providing quick and
resource-efficient knowledge transfer from the cluster-specific
parameters to the infrastructure-specific parameters. Numerical
results based on extensive simulations show that the proposed
framework performs well, both within supervised and unsuper-
vised settings, yielding more accurate results than traditional
schemes.

Index Terms—Clustered federated learning (CFL), data hetero-
geneity, knowledge transferability, population-based structural
health monitoring (PBSHM), principal angles (PAs).

I. INTRODUCTION

STRUCTURAL health monitoring (SHM) of critical infras-
tructures is an essential practice to safeguard related

substantial investments and public resources. In the rapidly
evolving landscape of smart cities, bridges serve as vital
arteries that facilitate seamless connectivity, drive economic
growth, and enhance the quality of urban life. As urban envi-
ronments become increasingly complex, maintaining bridges’
structural integrity and reliability is crucial to ensuring safety
and sustainability [1], [2].
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By integrating digital technologies related to advanced
sensors and inference algorithms, data-driven SHM approaches
have been developed, which enable proactive maintenance and
informed decision-making, strengthening the resilience and
efficiency of smart city infrastructures [3], [4]. Nonetheless,
maintenance and management of bridges keep posing
significant challenges in urban environments [5], [6], [7].
Population-based SHM (PBSHM) is a collective approach
enabling data sharing across multiple structures, facilitating
more comprehensive analysis and predictive maintenance
strategies. Moreover, by integrating monitoring processes,
authorities can optimize resource allocation, enhance the
detection of widespread issues, and improve the overall
resilience of bridge networks within intelligent cities.

In the remainder of this section, we briefly review rel-
evant works dealing with SHM and related limitations in
Section I-A, while describe the proposed contribution and
article organization in Section I-B.

A. Related Work

The availability of informative data remains a significant
obstacle for effective design of SHM. Labeled data related
to structural damages are often difficult and/or expensive
to obtain, making it challenging to develop SHM methods
potentially handling all possible damage scenarios [8], [9].
Transfer learning approaches have been explored primarily for
generating labeled datasets from finite-element models and
interpret unlabeled experimental bridge data [10], [11], [12].
However, data augmentation through hybrid datasets combin-
ing numerical and monitoring data requires individual (per
bridge) model creation and calibration, leading to extensive
computational resources [13].

The current isolated approach to monitoring and assess-
ing each bridge independently leads to inefficiencies and
missed opportunities for comprehensive infrastructure man-
agement [14], [15]. To overcome these challenges, PBSHM
approaches proceed by selecting a pool of bridges and
establishing a centralized mechanism for health assess-
ment [16], [17], [18]. The objective of PBSHM is to improve
structural health-state inference by using data from multiple
structures, facilitating knowledge transfer even when some
structures have limited or no damage-state data [19], [20].

Transfer learning has been applied to facilitate cross-
structure diagnostics and improve the performance of SHM
systems [21], [22], [23], but relevant challenges related to
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privacy constraints have been overlooked. Model training
across different datasets originated from bridges belong-
ing to different stakeholders might not be allowed.
Additionally, mismatch learning when transferring information
between dissimilar structures can potentially degrade the
performance [24], [25], [26], [27].

Structural similarities among bridges in PBSHM have
often been assessed using abstract representations, such as
irreducible element models or attributed graphs, to com-
pare their topological and material properties [28], [29], [30].
Despite their appealing performance, these methods can be
computationally intensive and may only partially capture
the dynamic behavior of structures. An alternative approach
involves measuring similarity based on patterns identified
on real-world data to form groups [31]. Although grouping
bridges based on measured data helps mitigate the risk of
negative transfer in dissimilar structures, previous works pri-
marily focused on centralized learning (CL), where raw sensor
data is transmitted to a central location for analysis. This
approach demands excessive communication resources and,
more critically, raises concerns about exposing sensitive struc-
tural design information [32], [33]. This issue is particularly
significant in PBSHM, where data from multiple structures are
essential for building robust and effective SHM models via
communication-efficient privacy-preserving learning.

Privacy issues in SHM have been considered
in [34] and [35] via distributed learning, treating sensor
sets on a single bridge as individual clients. Each client
locally trains a machine learning model without sharing
data, but sensors’ limited computational and communication
capabilities introduce serious obstacles to their deployment.
Moreover, the analysis is restricted to individual bridges,
limiting its applicability to PBSHM, which usually involves
multiple bridges. Additionally, aspects like scalability, such
as integrating new clients into the network, and knowledge
transferability across structures remain unexplored.

B. Article Contribution and Organization

This article provides a comprehensive framework based
on clustered federated learning (CFL) that ensures high
accuracy and enables effective knowledge transferability in
PBSHM. The proposed approach minimizes data transmission
within a collaborative scenario where models benefit from
diverse information gathered across multiple structures while
preserving data privacy. More specifically, the framework
relies on 1) cluster identification and 2) cluster training. In the
former phase, bridge data is analyzed in a privacy-preserving
setting to identify clusters based on underlying similarities.
In the latter phase, models (one per cluster) are trained
independently with each bridge sharing only model parameters
with a centralized server.

This work focuses on bridge damage detection, however, the
proposed algorithm can be applied in a straightforward way to
SHM of other critical infrastructures. From a general perspec-
tive, the proposed framework enables a scalable and secure
approach to proactive maintenance of critical infrastructures,
ultimately strengthening their resilience.

The main contributions are summarized as follows.
1) We develop a privacy-preserving framework for PBSHM

that leverages structural similarities to cluster bridges
and trains models tailored to the specific needs of each
cluster.

2) We introduce a one-shot clustering method based on
principal angles (PAs) to group structures based on
underlying data similarities which does not require any
prior knowledge.

3) The proposed algorithm is capable to integrate seam-
lessly new structures (e.g., bridges added post-training)
and assign them to appropriate clusters even with limited
data.

4) We present simulation results for supervised scenarios to
validate our proposed framework, including comparison
with alternative methods based on CL and traditional
federated learning (FL) models.

5) We explore the suitability of the proposed framework to
unsupervised scenarios, demonstrating its versatility to
various settings.

The remainder of the article is organized as follows.
Section II introduces the concepts of FL and PAs; Section III
describes the dataset used to validate the proposal; Section IV
details our proposed approach for clustering and training
cluster-specific models; simulation results for both supervised
and unsupervised scenarios are presented in Section V; finally,
Section VI provides conclusions and outlines future work.

Notation: Bold uppercase letters (e.g., A) and bold low-
ercase letters (e.g., a) denote matrices and column vectors,
respectively. The transpose operator is denoted (·)T . The
induced norm is denoted || · ||. Calligraphic letters (e.g., C)

represent sets, except for L which is used to denote the loss
function. The cardinality of a set C is represented by |C|. The
gradient operator is denoted ∇(·).

II. PRELIMINARIES

A. FL

FL utilizes a distributed approach to train machine learning
models by leveraging data across multiple decentralized clients
(bridges in our context) without collecting the data at a
central location. Each client receives model parameters from
a centralized server and fine-tunes them locally using the
available dataset. Fine-tuned parameters are then sent back to
the server, where a global model is constructed by aggregating
the local model parameters [36]. The decentralized nature of
FL enhances privacy by minimizing the exposure of client
data and facilitates communication efficiency by allowing data
processing on local devices.

A central server is connected with a group of clients (Q)

to solve the following optimization problem [37]:

min
θ

1

|Q|
∑

q∈Q
Lq

(
θ;Dq

)

︸ ︷︷ ︸
L(θ;Dq)

(1)

where Lq(θ;Dq) represents the local objective function used
by the qth client with its corresponding dataset Dq, and θ
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collects the model parameters shared among all clients. The
selection of the objective function is task-dependent with
cross-entropy and mean squared error (MSE) being commonly
used for classification and regression tasks, respectively.

The iterative procedure is implemented with the server
distributing the current global model parameters (θn) to a
randomly selected subset of clients (Qn ⊂ Q) at the nth
iteration (namely, communication round). The qth client within
Qn updates the parameters using its local dataset (Dq) with
either mini-batch or full-batch gradient descent. In the case of
full-batch gradient descent, the update of local parameters is
based on

φq,n ← θn − η∇Lq
(
θn;Dq

)
(2)

where η represents the learning rate and φq,n denotes the
model parameters of the qth client after the local update. Upon
completing local training, clients transmit the locally-updated
parameters (φq,n) back to the server. The server aggregates
the updates into a global model as follows:

θn+1 =
∑

q∈Qn

(
|Dq|∑

j∈Qn
|Dj|

)
φq,n. (3)

The process is repeated until convergence (or other stopping
criterion).

Despite its growing popularity, FL faces significant chal-
lenges due to data heterogeneity across local clients, which
can adversely affect the performance of the global model if not
properly managed [38]. CFL addresses this issue by grouping
clients with similar data distributions into clusters and exploits
FL within each cluster [39]. Cluster identification is usually
challenging and requires prior knowledge [40]. Fig. 1 provides
a pictorial description of the main learning approaches, where
edge devices act as clients, collecting data and performing
local learning.

B. PAs

Principal component analysis (PCA) is a traditional statis-
tical method in signal processing, data analysis, and pattern
recognition, which simplifies the analysis of large datasets by
reducing their dimensionality [40], [41].

For a data matrix X of size s × f, where s represents the
number of samples and f represents the number of feature
variables,1 the covariance matrix (C) is computed as

C = 1

s− 1
XTX. (4)

The core concept of PCA involves performing eigenvalue
decomposition (EVD) of the covariance matrix (C) identifying
the principal components that capture the variance in the data
via eigenvectors (vi) and corresponding eigenvalues (λi). The
covariance matrix (C) is decomposed as

C = V�VT (5)

where the matrix V = (v1, . . . , vf ) collects the eigenvectors
and � = diag(λ1, . . . , λf ) is a diagonal matrix with the

1It is assumed that each column has null sample mean.

Fig. 1. Learning paradigms. (a) CL. (b) FL. (c) CFL.

eigenvalues on the main diagonal. PCA identifies a subspace
via the eigenvectors associated to the largest eigenvalues [42].

The PAs (0 ≤ θ1 ≤ · · · ≤ θq ≤ [π/2]) between two
subspaces U and Y , having, respectively dimensions p and q
(with 1 ≤ q ≤ p), are defined recursively as [43]

cos(θk) = uT
k yk = max

u∈U
max
y∈Y

uTy (6)

s.t. ‖u‖ = ‖y‖ = 1

s.t. uTui = 0 , yTyi = 0 ∀i = 1, . . . , k − 1
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TABLE I
BRIDGE PROPERTIES

with {u1, . . . , uq} and {y1, . . . , yq} named principal vectors.
The PA is a useful metric to assess the level of

(mis)alignment between subspaces, providing insight into
data distribution similarities [44]. The more significant the
difference in data heterogeneity between two clients, the more
orthogonal their subspaces, making it a valuable criterion for
clustering and optimizing FL performance [40].

III. DATA DESCRIPTION

To validate the proposed methodology, a dataset was gener-
ated through numerical simulations based on a vehicle-bridge
interaction (VBI) model. It includes the simulations of 10
different simply-supported bridges with a modulus of elasticity
equal to 3.5 × 1010 N/m2 and different properties (length,
second moment of area (SMA), and mass per unit length
(MUL)) as provided in Table I. Each bridge was modeled
using a finite element method grounded in Euler-Bernoulli
beam theory, with the number of elements proportional to the
length of the bridge.

The VBI-2D tool simulated the interaction between road
traffic and bridges. It is an open-source MATLAB software
which allows for customizing various parameters (e.g., vehicle
models, road irregularities, bridge properties). The coupled
vehicle-bridge response was computed via direct integration
of the system’s equations of motion. The simulations involved
single vehicles traversing the bridges at constant speeds, with
various road, vehicle, and bridge configurations to capture the
dynamic structural responses. Vibration signals were measured
at five equidistant locations along each bridge with various
vehicle properties, environmental conditions [45], [46], [47],
[48], [49].

More specifically, three scenarios (one healthy and two
damaged) are considered.

1) Healthy: No damage in the bridge.
2) DC1: Damage located at the midpoint of the first half

of each bridge.
3) DC2: Damage located at the midpoint of the entire

bridge.
The damage was modelled as a 20% or 30% stiffness loss at
each location. For the scenario with 20% (resp. 30%) stiffness
loss, 500 (resp. 100) events were generated.

IV. PROPOSED ALGORITHM

The proposed approach relies on three key steps.

Fig. 2. Proposed model.

1) Unsupervised privacy-preserving clustering to iden-
tify groups among the datasets of available bridges
exploiting the concept of PAs.

2) CFL-based model training exploiting efficiently FL in
each cluster.

3) Robust accommodation of new bridges exploiting
transfer learning.

The workflow of the proposed algorithm is illustrated in
Fig. 2 and the details are provided in the rest of this section.

A. PA-Based Clustering

The clustering algorithm exploits the concept of minimum
PAs between subspaces derived from bridge local data, i.e.
bridges in the same cluster exhibit similar subspace (and
physical) characteristics. Accurate cluster identification opens
the opportunity to train optimally-customized models [50], as
opposed to using a single model for different bridges usually
resulting in modest performance.

Local data at each bridge is processed via fast Fourier
transform (FFT) and PCA. More specifically, PCA is applied
to the magnitudes of the FFT components and the main
eigenvectors (associated with the strongest eigenvalues) are
shared with the central server, which computes the minimum
PAs across all the pair of bridges.2 K-means is then applied to
the computed minimum PAs and the elbow method is adopted
for selecting the proper number of clusters.

The use of PAs ensures a data-driven clustering approach,
capturing inherent similarities in vibration characteristics.
Engineers and bridge owners can interpret the clustering
results by analyzing how bridges are grouped based on their
structural response patterns from sensor data. Once clustered,
operators can use cluster-specific models to compare a bridge’s
behavior with its peers, aiding in detecting anomalies or
potential structural degradation.

The proposed clustering approach does not require any prior
knowledge about the bridges and is privacy-preserving since

2The PAs are computed as in [43], using the SciPy library.
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only anonymous compressed information from the raw data is
shared.

B. CFL

The central server randomly initializes one model per
cluster, with model size depending on the maximum duration
of the events in the datasets associated with the specific cluster.
Each cluster operates independently with bridges acting as
clients receiving initial model parameters from the server. The
bridges update the model locally by conducting one or more
training epochs with their local data and transmit the updated
parameters back to the central server.

The central server aggregates the parameters from the
bridges within the same cluster and redistributes the cluster-
specific model parameters back to the corresponding bridges
for the next communication round. Additionally, the bridges
share their local validation accuracy (or loss) to enable
the server monitoring performance improvements across
communication rounds.

C. Transfer Learning

The proposed framework can easily accommodate new
bridges into the clustered model. Upon joining the network, a
new bridge extracts the principal vectors from its local dataset
according to the procedure in Section IV-A and sends them
to the central server. The server identifies the appropriate
cluster for the new bridge and shares the existing model
parameters of that cluster. Upon receiving the parameters,
the new bridge fine-tunes the cluster-specific model, thus
effectively leveraging the pretrained parameters.

D. Communication Overhead

We refer to communication overhead as the amount of data
exchanged during the training process. Assuming that the same
precision is used for measurements and model parameters, we
consider the number of (real-valued) symbols as a reliable
estimate of the communication overhead.

The communication overhead for CL (OCL) is

OCL =
K∑

k=1

size(Dk) (7)

where size(Dk) denotes the size of the local data at the kth
bridge and K is the total number of bridges.

The communication overhead for FL (OFL) is

OFL = 2PTK (8)

where P represents the total number of the model parameters
and T denotes the total number of communication rounds.3

The communication overhead for CFL (OCFL) is defined as

OCFL =
C∑

c=1

Oc (9)

where C is the number of clusters and Oc represents the
communication overhead for the cth cluster which is computed

3In this work, the value of P is computed using PyTorch (https://pypi.org/
project/torch-summary/).

similarly to (8). The similarity of the bridges within the
same cluster allows for using models with smaller number of
parameters in some clusters, thus resulting in reduced overall
communication overhead.

V. SIMULATION RESULTS

We conducted extensive experiments in both supervised and
unsupervised scenarios for PBSHM to assess the performance
of the proposed CFL-based framework. We utilized Scikit-
Learn and SciPy libraries and employed PyTorch during the
training and testing phases of ML models. In our study, 8
bridges participated in the CFL process, while the remaining
2 bridges were excluded from the training phase and reserved
to evaluate the algorithm’s transferability. We employed the
Adam optimizer and cross-entropy loss for training, using a
batch size of 32. In the supervised scenario, the dataset was
split into 80% for training/validation and 20% for testing;
in the unsupervised scenario, 70% (healthy) data for train-
ing/validation and 30% for testing. The learning rate was
set between 10−4 and 10−3 and optimized with random grid
search. The number of communication rounds for training was
independently set for each cluster.

For clustering, each participating bridge processed 30% of
its local data with sampling frequency of 200 Hz computing
the 100 FFT components. Different tests suggested that 3
principal vectors from PCA are sufficient to ensure effective
clustering while preventing data reconstruction from a poten-
tial eavesdropping attack.

For the supervised scenario,4 a consistent structure was
selected for each cluster model featuring 3 convolutional layers
with a stride of 1, filter size of 5 × 5, and ReLU activation
function. The channel counts for the layers is 5 to 64, 64
to 32, and 32 to 6, respectively. The output is flattened and
directed into a fully-connected layer that classifies the data
into 3 categories: 1) Healthy; 2) DC1; and 3) DC2. However,
the input size is selected depending on the duration of the
events in the training set, thus resulting in a different size for
the model in each cluster.

For the unsupervised scenario, we select autoencoders
(AEs) with convolutional and deconvolutional layers as cluster
models. Each encoder features 3 convolutional layers with a
kernel size of 3 × 3 and a stride of 2, complemented by a
ReLU activation function. The channel counts for the encoder
layers of the models for Cluster 1 and Cluster 2 are 16 to
32, 32 to 64. The output is flattened and directed into a fully
connected layer, creating the latent space representation of size
16. The encoder for Cluster 3 is slightly different, with channel
count being 32 to 64, 64 to 128. Then, again, the output is
flattened and directed into a fully connected layer, creating
the latent space representation of size 32. The decoder used
the transposed convolutional layers to reconstruct the original
input shape. Again, the input size is selected depending on the
duration of the events.

4Unless differently specified, the models are trained with data from the
scenario with 20% stiffness loss.
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Fig. 3. Clustering analysis. (a) Elbow method. (b) 2 Feature space.

A. Clustering Analysis

Fig. 3(a) describes how the optimal number of clusters was
selected based on the metric within-cluster sum of squares
(WCSSs) with the elbow pointing at 3 clusters. We apply PCA
to the angle matrix and project it into a 2-D feature space
to further analyse the embeddings derived from PAs used for
clustering the bridges. Fig. 3(b) displays the results of the PCA
into a 2-D feature space, where 3 distinct clusters are clearly
identified. The 3 clusters effectively group the bridges with
similar structural cross-section geometries, thus supporting
the claim that the clustering algorithm works without prior
information. Additionally, it is worth noticing that the clusters
appears related to the natural frequencies of the bridges: e.g.,
bridges B09 and B11 have much closer natural frequencies
compared to B27.

B. Supervised Scenario

Fig. 4 demonstrates the effectiveness of the proposed CFL
approach by testing the model of the cth cluster (Mc) on data
from the dth cluster (Cd). More specifically, it is apparent that
each cluster maintains high accuracy (achieving approximately
95%) by sharing only model parameters and keeping the
models specific to each cluster. High level of performance is

Fig. 4. Cluster models performance.

Fig. 5. Accuracy comparison.

attained without the need for fine-tuning of the models to indi-
vidual bridges within each cluster before testing, suggesting
that the cluster is robust enough to generalize across all bridges
in the specific cluster. In contrast, the performance of a model
on data from different clusters is notably lower, highlighting
the variability in data characteristics across different bridges.

Fig. 5 compares the performance of the proposed CFL
approach with traditional approaches, such as CL and FL.
Apparently, the proposed methodology consistently outper-
forms the conventional FL scheme across all cluster bridges.
Differently, when compared to CL, the proposed approach
does not exhibit a clear advantage in terms of performance
(sometimes better, sometimes slightly lower). However, it
is worth remembering that CL requires transferring all
data to a central server, leading to significant communica-
tion/computational resources and high risk in terms of privacy.

Fig. 6 showcases the effectiveness of the proposed method-
ology in reducing communication overhead, illustrating that
traditional schemes, such as CL and FL incur greater com-
munication costs than the proposed CFL scheme. Also, the
communication overhead related to each individual cluster
is shown to highlight the different behavior across clusters.5

In contrast, traditional schemes lack clustering information,

5This different behavior can be attributed to differences in model archi-
tectures, number of communication rounds needed to stabilize the loss, and
event sizes of the bridges involved in the training procedure.
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Fig. 6. Communication overhead.

TABLE II
ACCURACY WITH 30% STIFFNESS LOSS

resulting in the transmission of all possible information to the
central server.

In Table II, we present the performance of the proposed
framework when the damage condition of the bridge changes
from 20% reduction in stiffness to 30% reduction. This
increase in damage severity can negatively impact detection
performance, necessitating an update of the detection model
to maintain high accuracy. We consider fine-tuning of the
cluster model parameters, enabling rapid adaptation to new
damage conditions. Notably, with only 10 epochs and limited
event data, the proposed framework consistently achieves an
accuracy exceeding 80% for each cluster demonstrating to be
effective even with evolving damage conditions.

Fig. 7 illustrates the integration of 2 new bridges (B25
and B37) into the existing CFL system, each having data
with size approximately 30% of the size of the data from
existing bridges. The addition of the new bridges expands
the angle matrix from 8 × 8 to 10 × 10. After PCA, each
new bridge (indicated by a cross (×) in Fig. 7) seamlessly
joins the system. More specifically, B25 and B37 align with
Cluster 2 and Cluster 3, respectively. The examples illustrate
the adaptability and efficiency of the clustering algorithm
in integrating new bridges. After identifying their respective
clusters, the new bridges swiftly adapt the previously trained
clustered parameters for personalized damage detection.

Fig. 8 provides insights into selecting the appropriate model
parameters for transferring knowledge from the cluster-specific
models to new bridges (B25 and B37). The results confirm
that B25 and B37 integrate well into Cluster 2 and Cluster 3,
respectively. The results are related to the performance after
local fine-tuning over 20 epochs to achieve an average accu-
racy 95% with limited data. Conversely, when new bridges use
parameters from clusters to which they do not belong, loss in
performance is experienced.

Fig. 7. New bridges integration.

Fig. 8. Test accuracy of new integrated bridges.

Fig. 9. Test accuracy of newly integrated bridges. (a) B25. (b) B37.

Fig. 9 illustrates the efficacy of employing the pretrained
cluster-specific model for a new bridge compared to devel-
oping a new model with random initialization. The accuracy
curves, derived from testing on 150 events, clearly shows that
the model using cluster-specific parameters learns faster and
maintains a substantial performance advantage over the model
with random initialization, until the performance gap between
the two approaches narrows close after 45 epochs and the
accuracy reaches convergence.

C. Unsupervised Scenario

In the case of unsupervised damage detection, we assume
that each bridge fine-tunes the model from the corresponding
cluster to create a personalized model. Cluster models are
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Fig. 10. ROCs of different bridges experiencing both types of damages DC1
and DC2. (a) Cluster 1 (20%). (b) Cluster 1 (30%). (c) Cluster 2 (20%).
(d) Cluster 2 (30%). (e) Cluster 3 (20%). (f) Cluster 3 (30%).

trained over 2000 communication rounds and local fine-tuning
is performed over 300 epochs. We use the MSE as loss
function and the Adam optimizer.

Reconstruction losses were collected from 200 healthy
events (50 from training to establish the baseline) and 200
damaged events. The Tukey outlier removal method and an
exponentially weighted moving average (EWMA) equation
are implemented to enhance detection. Results are evaluated
in terms of receiver operating characteristics (ROCs), with
Healthy status (resp. presence of a Damage) being labeled “0”
(resp. “1”).

Fig. 10 shows the ROCs of all bridges, grouped by clusters,
under damaged conditions with stiffness losses of 20% and
30%. The area under the curve (AUC) is consistently above 0.9
and exceeds 0.99 in some cases. Bridges in Cluster 3 perform
slightly worse, particularly with 20% stiffness loss, than those
in Cluster 1 and 2. This behavior can be linked to the
structural cross-section geometries of the bridges in the cluster,
but a formal analysis falls beyond the scope of this article.
Furthermore, it is apparent that as the stiffness loss increases,
the proposed algorithm more effectively distinguishes dam-
aged cases from healthy ones, thereby improving overall
performance. Finally, It is worth noticing that clustering (being
based solely on healthy data) is performed with the same
procedure as in the supervised scenario.

Fig. 11 shows the ROCs of the new bridges (B25 and B37)

when experiencing damaged conditions and after being inte-
grated in the system exploiting the cluster models or a random

Fig. 11. ROCs of new bridges experiencing both types of damages DC1 and
DC2. (a) B25. (b) B37.

initialization. Again, the performance confirms the advantage
of using the proposed method and also the effectiveness of
being placed in the proper cluster.

VI. CONCLUSION AND FUTURE WORKS

In this article, we proposed a CFL-based framework for
effective PBSHM in a privacy-preserving environment with
validation on bridge monitoring. We developed an unsuper-
vised classifier to cluster bridges with similar underlying
properties. The proposed clustering algorithm exploits the
PAs across data subspaces and does not require prior knowl-
edge of the bridges. Cluster-specific models are trained and
tested on various types of damage across different bridge
structures. Additionally, we introduced a mechanism to seam-
lessly integrate new bridges with limited training data into
the architecture. Our approach was validated via numerical
simulations in both supervised and unsupervised scenarios.
The results showed that the proposed CFL-based approach
outperforms traditional learning methods in terms of accuracy
and communication efficiency.

A key limitation of the proposed method is the poten-
tial increase in communication overhead (with respect to a
CL framework) when model convergence requires a higher
number of communication rounds between the bridges and
the central server. Quantization [51] and low-rank model
adaptation [52] techniques could be explored in future works
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to address this issue. Other relevant issues to be investi-
gated are related to handling more efficiently heterogeneous
computational resources across bridges, understand potential
different performance of different clusters, and protect the
overall architecture from the risk of parameter poisoning.
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